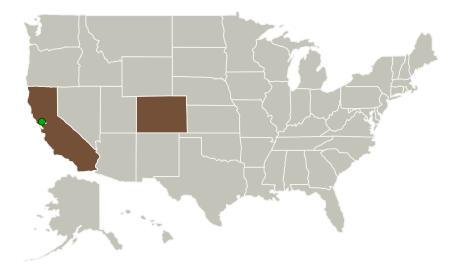
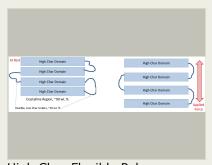
High Char Flexible Polymers, Phase I


Completed Technology Project (2016 - 2016)


Project Introduction

TDA Research is proposing to chemically modify the polymer backbone of polymers known to have char yields upwards of 70% at 800+ °C (under inert gas) in order to make the polymers flexible, and possibly elastomeric at or near room temperature. Flexibility is a result of easy rotation around the bonds within a polymer backbone, maintained only in the presence of low crosslink density. Conversely, a high char yield requires very robust bonding, generally with high crosslink density, since floppy, easily broken bonds lead to the evolution of gas, reducing the residual mass. Our modifications will reduce the char yield, but, in this case, even a 10% loss in char yield would still be comparable to the char yield of the inflexible phenolic resins currently in use.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
TDA Research, Inc.	Lead Organization	Industry	Wheat Ridge, Colorado
• Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California


High Char Flexible Polymers, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

High Char Flexible Polymers, Phase I

Primary U.S. Work Locations

California Colorado

Project Transitions

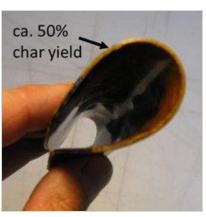
0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139775)


Images

Briefing Chart Image

High Char Flexible Polymers, Phase I

(https://techport.nasa.gov/imag e/136229)

Final Summary Chart Image High Char Flexible Polymers, Phase I Project Image (https://techport.nasa.gov/imag e/131605)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TDA Research, Inc.

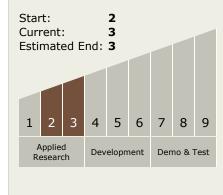
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

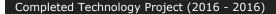
Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Michael Diener


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Char Flexible Polymers, Phase I

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - └─ TX12.1.3 Flexible Material Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

